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Abstract We have developed a new module for higher-

order correlated methods up to coupled-cluster singles and

doubles with perturbative triples (CCSD(T)). The matrix-

matrix operations through the DGEMM routine were pur-

sued for a number of contractions. This code was then

incorporated into the ABINIT-MPX program for the frag-

ment molecular orbital (FMO) calculations. Intra-fragment

processings were parallelized with OpenMP in a node-wise

fashion, whereas the message passing interface (MPI) was

used for the fragment-wise parallelization over nodes. Our

new implementation made the FMO-based higher-order

calculations applicable to realistic proteins. We have per-

formed several benchmark tests on the Earth Simulator

(ES2), a massively parallel computer. For example, the

FMO-CCSD(T)/6-31G job for the HIV-1 protease (198

amino acid residues)–lopinavir complex was completed in

9.8 h with 512 processors (or 64 nodes). Another example

was the influenza neuraminidase (386 residues) with osel-

tamivir calculated at the full fourth-order Møller–Plesset

perturbation level (MP4), of which job timing was 10.3 h

with 1024 processors. The applicability of the methods to

commodity cluster computers was tested as well.

Keywords Fragment molecular orbital � FMO �
coupled cluster � CC � parallelization � OpenMP �
MPI � vectorization � DGEMM � protein

1 Introduction

Kitaura et al. [1] proposed the fragment molecular orbital

(FMO) scheme in 1999, by which fully quantum-
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mechanical (QM) calculations are made possible for large-

scale systems just like proteins at the practical cost of

computations. FMO-related methodological developments

and associated applications have been achieved in diverse

ways during this decade [2–4]. In the original two-body

treatment [1], the target molecular system is divided into

appropriate fragments, and a series of parallelized MO

calculations are performed on the fragment monomers and

dimers under the presence of environmental electrostatic

potential to ensure chemical reliability. The Hartree–Fock

(HF) calculations of all monomers are repeated until the

self-consistent charge condition is satisfied, describing the

electronic polarization of system. The electron delocaliza-

tions are then taken into account by the dimer calculations.

The inclusion of correlation corrections is straightforward

after the HF step [2–4].

The acceleration through an efficient dual-level paral-

lelism is essential to provide the applicability of FMO

calculations [2–4]. Namely, the fragment monomers or

dimers are distributed over the groups of processors (upper

level), and the internal calculation of each fragment is then

parallelized for such as atomic orbital (AO) integrals

within a given group (lower level). Hence, the FMO

scheme has an inherent affinity for massively parallel

processors. There are other similar schemes utilizing the

concepts of fragmentation and many-body expansion as

well as multiple polarization [5–29] (e.g., divide-and-con-

quer (DC) [7–9], X-Pol [15, 16] and effective fragment

potential (EFP) [17, 18]). A rich variety of chemically

relevant applications [2–4] beyond demonstrations might

rather constitute a relative strength of the FMO scheme,

however. Especially, the well-defined fragment-wise

interaction energies derived from FMO calculations have

been recognized as useful measures to grasp the insight of

protein concerning residue–residue and residue–ligand

interactions biochemistry and pharmachemistry [4].

In FMO application studies [2–4], the second-order

Møller–Plesset perturbation (MP2) calculation [30] has

become quite common as the default option to incorpo-

rate the electron correlation, because MP2 is the lowest

and cheapest many-body theory retaining the size-con-

sistency and unitary-invariance [31]. Nevertheless, MP2

is known to overestimate the dispersion type interactions

by certain extent. Hence, beyond-MP2 methods [31, 32],

in which the electron pair–-pair interactions and multiple

excitations are incorporated as higher-order effects,

could thus be desirable. For small molecules, the cal-

culation of coupled-cluster singles and doubles (CCSD)

with perturbative triples (CCSD?T(CCSD) [33] or

CCSD(T) [34]) has been a golden standard method with

flexible basis sets [31].

There have now been three major programs for FMO

calculations. From the work of Ref. [35] at the HF level,

Fedorov et al. have ever been adapting various standard MO

methods implemented in the GAMESS program [36] into the

FMO context [2–4]. Up to three-body FMO-MP2 calculations

[37, 38] were available in GAMESS. The FMO-CCSD(T) [39]

ability was provided as well, while no application to real

problems has been performed, to date. The second FMO

program, ABINIT-MP, was originally developed by Nakano

et al. [40] for the FMO-HF calculations of proteins, by making

efficient approximations in computing the electrostatic

potentials. After that, Mochizuki et al. augmented a couple

of MP2 modules with an integral-direct parallelism

[41–43]; the enhanced version was frequently distinguished

as ABINIT-MPX. Recently, the third-order MP perturba-

tion (MP3) has been efficiently implemented [44], by which

a giant influenza-related protein complex (hemagglutinin

(HA) trimer and two Fab-fragments) consisting of more

than two thousands residues was computed on a massively

vector-parallel computer, the Earth Simulator (ES2)1. The

third program is PAICS developed by Ishikawa and

Kuwata [45] for FMO-MP2. The approaches of integral

approximation like resolution-of-identity (RI) or Cholesky

decomposition (CD) (refer to a recent review [46]) have

attracted considerable interest in accelerating the correlated

calculations. References [47–49] reported the MP2 works

in this regard.

With the idea of fragmentation or locality, polymers or

molecular clusters were treated at the correlated level by

several research groups [19, 26, 27, 50–54], besides the

FMO-oriented groups; Ref. [19, 26, 27, 52] reported

beyond-MP2 calculations. Particularly, noteworthy are the

various efforts of the so-called local correlation methods

pioneered by Pulay and Saebø [55–57]. This kind of

calculations [57–70] is designed to reduce the scaling of

computational costs in a domain-specific fashion by the

use of localized MOs. Efficient local CC methods [58,

60–64, 67–70] were devised and applied to some

demonstrative examples, e.g., water clusters and linear

hydrocarbons. Similarly to FMO [2–4], a natural paral-

lelism was pointed out in Refs. [61–63] of the incremental

scheme, Refs. [68, 69] of the cluster-in-molecule (CIM)

approach and Ref. [70] of the divide-expand-consolidate

(DEC) method. Actual applications with these methods

are thus expected for larger real systems in the near

future.

In this paper, we report the incorporation of a parallelized

CC module into ABINIT-MPX [43, 44] for higher-order

correlated calculations based on the FMO scheme [1–4]. The

practical applicability to real proteins is pursued in our

implementation. The fundamental working equations by

Scuseria et al. [71] have been adopted for our implementa-

tion, as in the work by Kobayashi and Rendell [72] in which a

1 http://www.jamstec.go.jp/es/en/.
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hybrid strategy to use integrals having both MO and AO

indices was taken in the parallelization. The DGEMM rou-

tine of level-3 BLAS2 is extensively utilized for a number of

contractions among amplitudes, integrals and intermediates.

The CCSD(T) calculation [34] is available. Several simpli-

fied treatments such as the quadratic configuration-interac-

tion singles and doubles (QCISD) [73] and the full fourth-

order MP (MP4) [74] are supported as well. Essential

equations in CC and related theories [30–32] are summarized

in Sect. 2. Details of the implementation are described in

Sect. 3. As in the previous study of FMO-MP3 [44], we take a

mixed strategy of message passing interface (MPI)3 and

shared-memory OpenMP4. The former takes care of the

inter-fragment parallelization, while the latter involves the

intra-fragment one. In Sect. 4, several tests on commodity

computers are performed, followed by tests on ES2, a mas-

sively vector-parallel computer [44]. The largest protein

calculated at the FMO-CCSD(T) level on ES2 is the HIV-1

protease (198 amino acid residues) complex with lopinavir

comprising 3225 atoms. The FMO-MP4 calculations are also

done for larger influenza proteins. Promising timing data and

performance will be shown.

2 Essential equations

The CCSD wavefunction is given in an intermediately

normalized form [29]

jWCCSDi ¼ expðT1 þ T2ÞjW0i; ð1Þ

where W0 is the HF ground state reference with closed-shell

occupation. The exponential form of WCCSD ensures the size-

consistency or size-extensivity [31, 32]. T1 and T2 are the

singles and doubles excitation operators, respectively. Letting

ij and ab specify occupied MOs and virtual MOs, respectively,

a set of CCSD projection equations [71] is given as

W0jH � E0 1þ T1 þ T2 þ
1

2!
T2

1

� �����
����W0

� �
¼ ECCSD; ð2Þ

Wa
i jH � E0 1þ T1 þ T2 þ

1

2!
T2

1 þ T1T2 þ
1

3!
T3

1

� �����
����W0

� �

¼ 0;

ð3Þ

Wab
ij jH � E0 1þ T1 þ T2 þ

1

2!
T2

1 þ
1

2!
T2

2 þ T1T2

�����
�

þ 1

3!
T3

1 þ
1

2!
T2

1 T2 þ
1

4!
T4

1

�����W0

�
¼ 0: ð4Þ

Wa
i and Wab

ij are the states of single and double excitations,

respectively. E0 is the HF energy, and ECCSD is the CCSD

correlation energy. These coupled equations for

amplitudes, ti
a (singles) and tij

ab (doubles), should be

iteratively solved by computing the corresponding

residual vectors until convergence, where the formal cost

scales as N6 per iteration; N is the molecular size parameter

such as the number of basis functions. Based on the

generator formalism of spin-adaptation [75, 76], Scuseria

et al. [71] derived the explicit projection equations for

singles and doubles amplitudes in terms of MO integrals as

well as a variety of intermediate arrays, which were

introduced to factorize the contractions for efficient

computations. The resulting expressions presented in Ref.

[71] are essentially equivalent to those of Refs. [77, 78]

though such definitions of working arrays are different

from each other.

ECCSD is evaluated as [71, 72]

ECCSD ¼
X
ijab

½2ðia; jbÞ � ðib; jaÞ�sab
ij ; ð5Þ

sab
ij ¼ tab

ij þ ta
i tb

j ; ð6Þ

where the set of canonical orbitals with ei and ea as the

orbital energies is assumed and also the Mulliken notation

[30] is used for the MO integrals. The doubles amplitudes

have a convenient symmetry

tab
ij ¼ tba

ji ; ð7Þ

and thus, the restriction of i C j can halve the requirements

of memory and computation. The first-order MP (MP1)

doubles amplitudes

t
ab ð1Þ
ij ¼ ðia; jbÞ

Dab
ij

; ð8Þ

Dab
ij ¼ ei þ ej � ea � eb ð9Þ

may be used as an initial vector for the iteration, yielding

just the MP2 correlation energy. The costliest computation

may be associated with the three- and four-virtual MO

integrals for the doubles residual vector [71, 72]

rab
ij  rab

ij þ
X

cd

bab
cds

cd
ij ð10Þ

bab
cd ¼ ðac; bdÞ �

X
k

ðac; dkÞtb
k �

X
k

ðbd; ckÞta
k ; ð11Þ

while the actual processing is done directly from the list of

AO integrals, as described in Sect. 3. The aij
kl processing

rab
ij  rab

ij þ
X

kl

akl
ij s

ab
kl ; ð12Þ

akl
ij ¼ ðik; jlÞ þ

X
c

ðik; clÞtc
j þ

X
c

ðjl; ckÞtc
i þ

X
cd

ðkc; ldÞscd
ij

ð13Þ

2 http://www.netlib.org/blas/.
3 http://www.mpi-forum.org/.
4 http://www.openmp.org/.
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is relatively cheap, and it may be done with MO integrals.

Additionally, we show another couple of intermediate

arrays having N6 cost to construct [71]

jak
ic ¼ ðia; kcÞ �

X
l

ðil; ckÞta
l

þ
X

d

ðad; ckÞtd
i �

1

2

X
ld

ðkc; ldÞ tda
il þ 2td

i ta
l

� �

þ 1

2

X
ld

½2ðkc; ldÞ � ðkd; lcÞ�tad
il ; ð14Þ

kka
ic ¼ ðik; acÞ �

X
l

ðik; clÞta
l þ

X
d

ðac; dkÞtd
i

� 1

2

X
ld

ðkd; lcÞ tda
il þ 2td

i ta
l

� �
; ð15Þ

where the parts of three-virtual MO integrals can be

computed in a fashion similar to Eqs. 10 and 11 [72].

These arrays are contracted with tij
ab for the residual vector

(N6 cost).

As discussed in Refs. [78–80], QCISD [73] is obtained

by dropping all nonlinear T1-related terms in Eqs. 1, 2 and

3, except for T1 T2

W0jH � E0 ð1þ T1 þ T2Þj jW0h i ¼ EQCISD; ð16Þ

Wa
i jH � E0 ð1þ T1 þ T2 þ T1T2Þj jW0

	 

¼ 0; ð17Þ

Wab
ij jH � E0 ð1þ T1 þ T2 þ

1

2!
T2

2 Þ
����

����W0

� �
¼ 0: ð18Þ

This simplification of QCISD relative to CCSD provides a

substantial reduction of computations, especially in making

the intermediate arrays. Note that 1
2! T

2
2 retained for the

doubles projection plays a crucial role in providing the

size-consistency [30]. The complete omission of T1 leads to

CCD [30, 31] and QCID [73], in which no orbital relaxa-

tion effect is taken into account. Lee et al. [80] pointed out

that QCISD is vulnerable to too large contribution from

singles for the existence of near-degeneracies.

The fourth-order MP with singles, doubles and quadru-

ples, MP4(SDQ), may be calculated similarly, where the

doubles amplitudes vector should be updated twice giving

the contributions from MP3 and MP4(D) in order [31].

According to Szabo and Ostlund’s textbook [30], the

coupled electron-pair approximation (CEPA) has a close

relationship to CC and even size-inconsistent CI. In fact,

the introduction of appropriate energy shifts into the

residual vector provides CEPA-n (n = 0 - 3) [75, 81].

The performance and computational simplicity of CEPA

have been re-evaluated recently [82, 83]. From a viewpoint

of unitary-invariance, two options of CEPA-0 (linearized

version) and CEPA-1 (pair energy-averaged version) are

attractive to implement.

Once the CCSD iteration is complete, the triples correction

[31–34] may be computed if needed to improve the reliabil-

ity. This is effective in compensating the degradation from

near-degeneracies [80], and the corresponding equation for

the closed-shell HF reference has the following form

Dabc
ijk ¼ ei þ ej þ ek � ea � eb � ec; ð20Þ

Wabc
ijk ¼ Pabc

ijk

X
d

ðia; bdÞtcd
kj �

X
l

ðia; jlÞtbc
lk

" #
; ð21Þ

Vabc
ijk ¼ ðjb; kcÞta

i þ ðia; kcÞtb
j þ ðia; jbÞtc

k: ð22Þ

Pijk
abc in Eq. 21 is the six-fold permutation operator. The

restrictions of i C j C k or a C b C c can be applied to

Eq. 19 through the proper adjustment of pre-factors and

index exchanges. (see Ref. [84] for example). The con-

struction of Wijk
abc array requires N7 cost of computation but

has no need of iteration. Vijk
abc in Eq. 19 is replaced by 2

Vijk
abc for QCISD(T) [34, 73]. The ?T(CCSD) correction

proposed by Urban et al. [33] is obtained only by Wijk
abc.

Finally, the MP4(T) energy for the full MP4 treatment [74],

MP4(SDTQ), is evaluated with the MP1 doubles

amplitudes.

3 Implementation

3.1 Overall parallel design of CC module

Prior to describing the overall design of our program module,

we would like to brief the precedent papers concerning the

parallelized calculations of CC or triples corrections,

because they were informative for our implementation. The

EðTÞ ¼
1

3

X
ijkabc

Wabc
ijk þ Vabc

ijk

� �
4Wabc

ijk þWabc
kij þWabc

jki � 4Wabc
kji �Wabc

ikj �Wabc
jik

� �
Dabc

ijk

; ð19Þ
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UK group reported a series of pioneering studies [84–89] in

early 1990s, by using various computers (vector-parallel or

massively parallel). Rendell’s works [86, 88] were based on

the CCSD formulation by Scuseria et al. [71] as in Ref. [72].

Note also that a special middleware was prepared to hold the

doubles vectors in a small distributed-memory of parallel

machines in those days [88]. In other words, this paper

reflected the potential issue how to handle the doubles vec-

tors (consisting of amplitudes and residuals) in the case of

large-scale direct CC computations. This issue was solved by

the development of global array (GA) library [90], which

emulates the shared-memory environment for distributed

computing resources. Then, Kobayashi and Rendell [72]

utilized GA to develop their direct CC module, where the

‘‘aijkbc’’ algorithm of Ref. [89] was adopted for the

(T) processing. The use of GA [90] was helpful to avoid I/O

interruptions deteriorating the total computational efficiency

on massively parallel computers [91]. Koch et al. [92]

reported an AO integral-direct CCSD calculation with

parallelism.

In 2000s, several research groups made extensive efforts

on the development of parallelized CC program systems. It

is noteworthy that Piecuch and Landman [93] first intro-

duced the OpenMP parallelization for the CC calculations

(of state-universal type) on shared-memory computers. The

computerized equation derivation and implementation

system (known as TCE) was employed to generate highly

correlated and thus complicated CC codes [94–96] with the

GA-based parallelization [90]. By the use of an original

middleware, distributed data interface (DDI) [97] for

GAMESS, Gordon’s group [98, 99] achieved an efficiently

parallelized CCSD and (T) calculations, in which the

management of MO integrals on memory and also the way

of task distributions were analyzed well. In contrast, the

array-file having a smart I/O utility [100] was used by

Pulay et al. [101, 102] to enable large-scale calculations on

commodity computers with their program PQS [103]; their

largest QCISD calculation involved a total of 1512 AOs of

a very flexible basis set for a benzene dimer. The standard

MPI environment was used for the parallelization of

CFOUR [104, 105], whereas a specially developed sym-

bolic language (SIAL) to handle huge arrays in parallel was

used in ACES-III [106, 107]. Currently, the US Pacific-

Northwest laboratory group with NWCHEM [108] has

been ahead of the huge-scale massively parallel CC com-

putations [109–112]. Reference [111] reported the largest

benchmark CCSD(T) calculations of (H2O)20 up to 96000

processors on the Jaguar system, where the tuned version

of CC module by Kobayashi and Rendell [72] was

employed under the GA environment [90].

The management of doubles vectors (amplitudes and

residuals) is a critical concern, as addressed above.

Meanwhile, the multi-thread OpenMP technology has

become popular as a convenient and efficient paralleliza-

tion tool on the recent many-core computers with sizable

amount of memory per node. For example, a single node of

commodity cluster computers can easily be equipped with

a couple of quad-core (or hexa-core) chips and tenth of GB

memory at low price. The advantage of OpenMP over flat

MPI lies on the effective utilization of given memory space

and also on the usability of directive-based modifications

of loops. Figure 1 illustrates the comparable situation of

memory usage in the case of four cores per node. Certainly,

the parallelized MO calculations with OpenMP have been

reported increasingly [44, 93, 113–119]. In our previous

work on FMO-MP3 [44], the fully integral-direct parall-

elization of MP3 would have required larger memory space

than that of MP2, and therefore, the OpenMP paralleliza-

tion was utilized for the intra-fragment calculations. Hence,

we decided to adopt the OpenMP parallelization in our CC

module as the first option.

If memory is large enough under the OpenMP envi-

ronment, up to two-virtual MO integrals can be held in

addition to a current pair of doubles vectors (tij
ab and rij

ab)

during the iteration of CCSD or QCISD. In contrast, three-

and four-virtual MO integrals may be too demanding to

hold furthermore when N grows. As just done by Rendell

et al. in Refs. [72, 88], the contributions from these bulky

integrals (recall Eqs. 10, 11) could be computed on-the-fly

with the AO integrals, through the direct Fock-like con-

traction [120] named the external exchange operator (EEO)

technique. Pople et al. [121] first attempted such a way to

escape from the explicit formation of (ac, bd) for the disk-

based MP3 calculation. This approach was later general-

ized as the EEO or similar algorithms, which had been

widely used to process three- or four-virtual MO integrals

for correlated calculations [44, 56, 58, 60, 72, 76, 78, 88,

92, 98, 101, 102, 106, 122–124]. Since the EEO part could

Fig. 1 Illustrative difference in

memory usage between flat MPI

and OpenMP
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govern a sizable portion of CCSD or QCISD calculations

as discussed in Ref. [102], the efficient processing should

be pursued. A clear merit by the EEO technique has a

natural utilization of screenings based not only on the AO

integral values but also on the ‘‘test density’’ [122] in order

to reduce the computational cost. Another merit is the

reduced memory requirements relative to the holding of all

MO integrals [72, 88, 98]. By these circumstances, we

followed a hybrid integral usage of Refs. [72, 88], in which

up to two-virtual MO integrals (including also (ik, jl)) are

held on memory for the explicit contractions, while three-

and four-virtual MO integrals are processed through the

EEO-based implicit contractions (refer to Table 1 later).

The triples correction may be calculated after the con-

vergence of CCSD or QCISD iterations or the MP4(SDQ)

calculation. In that stage, there is no need to hold the

residual vector for doubles, and hence, a large memory

space is released. For the (T) calculation, we thus assumed

that the list of three-virtual MO integrals, (ab, ci), can be

held on memory with the canonical packing of a C b, in

contrast to the stage of iteration. The ‘‘abcijk’’ algorithm

[89, 102] was employed, in which the unique abc triplets are

assigned under the OpenMP parallelization. Working arrays

are computed with a full cubic form of ijk, and this way may

assist the effective usage of the cache area in processors.

We considered that the above-mentioned assumptions

for the memory usage of vectors and integrals are accept-

able for the case of actual FMO calculations, by which the

interaction energies among fragments should be of main

chemical interest [2–4]. In such application studies, the

6-31G and 6-31G* basis functions [125] have been typically

employed as the sets of valence double-zeta (VDZ) type

and its augmented variant with polarization (VDZP). The

corresponding N could reach 500–700 for fragment dimers,

depending on the combination of amino acid residues in

proteins or nucleotides in DNA segments. Nowadays, such

sizes of problems would be tractable by the beyond-MP2

methods under the OpenMP parallelization on modern

computers. In summary, the overall parallel design of our

CC module was oriented to the FMO calculations without

I/O processing for a number of contractions. The solid-state

disk (SSD) system with high-rate I/O ability has been

popularized for commodity computers but still rare for

massively parallel computers with which the FMO calcu-

lations of very large proteins like influenza HA [44] could

be processed in a short time. This is a reason why we

continued the parallelized direct style of computations, as

in our previous works with ABINIT-MP(X) [40–44].

3.2 Contraction processing

The high affinity of CC and triples calculations with

matrix-matrix operations was demonstrated in early works

of Refs. [84–89] by the UK group. This should be attrib-

uted to the fact that a series of tensorial contractions among

amplitudes, integrals and factorized intermediates consti-

tute the main body of beyond-MP2 calculations [31, 32].

Recently, the heavy use of DGEMM has been emphasized

in the same context [94, 96, 98, 99, 101, 102, 111]. We

definitely followed this strategy for our CC module. The

DGEMM library call can be executed in a highly efficient

manner on modern commodity processors as well as vector

processors.

The list of MO integrals should be generated by the

transformations from AO integrals. The integral types of

(ia, jb), (ij, ab), (ia, jk) as well as (ik, jl) are prepared and

held on memory before the iteration starts. Table 1 lists the

four-index arrays needed for CCSD. Note that (ia, jk) is

unnecessary in the cases without singles, e.g., CCD. The list

of (ia, jb) is most widely used for the tensorial contractions

by Refs. [71, 72], and it is obtained as

ðia; jbÞ ¼
X
pqrs

cpicqacrjcsbðpq; rsÞ; ð23Þ

where c is the AO-MO coefficient matrix. The

transformation is actually done with an integral-direct

parallelism in the following quarter steps

ðiq; rsÞ ¼
X

p

cpiðpq; rsÞ; ð24Þ

ðia; rsÞ ¼
X

q

cqaðiq; rsÞ; ð25Þ

ðia; jsÞ ¼
X

r

crjðia; rsÞ; ð26Þ

ðia; jbÞ ¼
X

s

csbðia; jsÞ: ð27Þ

Table 1 Four-index arrays in CCSD calculation

Quantity Dimensioning Note

Integral

(ia, jb) [b, a, j, i]

(ij, ab) [ab, ij] Canonical ij- and ab-pairs

(ia, jk) [k, a, j, i]

(ik, jl) [l, k, ij] Canonical ij-pair

Vector

tij
ab [a, b, ij] Amplitude/canonical ij-pair

rij
ab [a, b, ij] Residual/canonical ij-pair

EEO-working

sij
qs [ij, q, s] Density-like/reused as qik

qs

Xij
pr [ij, p, r] Fock-like/reused as Yik

pr

Zik
pq [ik, p, q] For kic

ka array (Coulomb)

These arrays are held in shared-memory per node. See text in Sub-

Sect. 3.2. FORTRAN style (or column-major) dimensioning is

adopted here
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DGEMM can be used in each step on the vector com-

puters [43, 44]; level-1 BLAS of DAXPY and DDOT are

also usable upon request to utilize the screenings to

reduce actual operation counts for commodity computers

[41, 42]. Other MO integrals may be generated similarly.

Clearly, the actual dimensioning of integral arrays to be

held in the shared-memory environment of OpenMP

should be optimized for a series of contractions during the

iteration. The array for (ia, jb) has a form of [b, a, j, i],

for instance (refer to Table 1). On another front, the

doubles vectors (both tij
ab and rij

ab) are held for the

canonical ij-pairs as [a, b, ij].

The correlated methods [30–32] currently available in

our CC module are listed as follows.

• MPn: MP2, MP3, MP4(D), MP4(DQ), MP4(SDQ),

MP4(SDTQ)

• CC: CCD, CCSD, CCSD(T)

• QCI: QCID, QCISD, QCISD(T)

• CEPA: CEPA-0(D), CEPA-1(D), CEPA-0(SD),

CEPA-1(SD)

• CI: CID, CISD (only for test purpose)

The CCSD calculation has both the highest cost of

contraction per iteration and the largest memory require-

ment, where the schematic flow is given in Fig. 2 for later

reference. The situation is better for the QCISD calcula-

tion, as denoted in Sect. 2. The omission of singles leads to

the further reductions of cost and memory, since there is no

need to process the contributions from three-virtual MO

integrals. These situations may be understandable in the

next two paragraphs.

Kobayashi and Rendell [72] well documented how to do

the EEO processing with N6 cost directly from the list of

AO integrals, and we would refrain from repeating detailed

descriptions, except on a couple of illustrative points. First,

the representative EEO computation concerns the bcd
ab term

of Eqs. 10 and 11 for the doubles residual vector [91],

sqs
ij ¼

X
cd

cqccsds
cd
ij ; ð28Þ

Xpr
ij ¼

X
qs

ðpq; rsÞsqs
ij ; ð29Þ

Xab
ij ¼

X
pr

cpacrbXpr
ij ; ð30Þ

rab
ij  rab

ij þ Xab
ij �

X
k

Xak
ij tb

k �
X

k

Xkb
ij ta

k : ð31Þ

The dimensioning of crucial working arrays are found in

Table 1 (see also ‘‘first EEO processing’’ in Fig. 2). The

canonical ij-pairs for the contraction in Eq. 29 is processed

with DAXPY under the screenings of pqrs-quartet and

‘‘test density’’ [122]. Other matrix multiplications is done

with DGEMM, in a similar way to the ‘‘2h-4p’’ case of

MP3 [44]. The parallelized exchange matrix construction

of Eq. 29 is actually performed with respect to shell units

of AOs [43, 44]. Equations 28, 30 and 31 of N5 steps are

parallelized over ij. Only the (ac, bd) contribution

contracted with tij
cd as Xij

ab is required for other methods,

QCISD or CCD; an ij-batch mode [44] would be selectable

when memory resource is limited. Additionally, Xij
pr just

formed is usable for the singles residual vector as

ra
i  ra

i þ
X
kcd

½2ðad; kcÞ � ðac; kdÞ�scd
ki : ð32Þ

Second, some parts of intermediate arrays in CCSD are

computed through another EEO processing. We exemplify

the third term contributions of jic
ak and kic

ka (Eqs. 14, 15)

involving three-virtual MO integrals written, respectively, as

jak
ic  jak

ic þ
X

d

ðad; ckÞtd
i ; ð33Þ

kka
ic  kka

ic þ
X

d

ðac; dkÞtd
i : ð34Þ

To evaluate these contributions, a pseudo-density

qqs
ik ¼ csk

X
d

cqdtd
i ð35Þ

is prepared (ik is here noncanonical), and the contractions

of not only usual exchange type for Eq. 33

Ypr
ik ¼

X
qs

ðpq; rsÞqqs
ik ð36Þ

but also coulomb type for Eq. 34

Zpq
ik ¼

X
rs

ðpq; rsÞqrs
ik ð37Þ

are carried out [72, 78, 124]. This AO-based Coulomb

contraction is needed only for CCSD. It is trivial to do the

remaining AO-MO transformations for Eqs. 33 and 34

when needed.

Fig. 2 Schematic flow of CCSD calculation. The second EEO

processing is skipped for CCD because of no contribution from

three-virtual MO integrals
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The DGEMM-based contractions involving jic
ak and kic

ka

with the amplitude vector of doubles are driven by the

outermost k-index for parallelization, where the order of

cost is N6 as denoted in Fig. 2. Two tentative arrays with

[a, c, i] dimensioning are formed for a given k, distin-

guished as ~k, to which the lists of one- and two-virtual MO

integrals are used to compute the contributions; recall

Eqs. 14 and 15. An example of contractions with these

arrays is written as [72]

rab
ij  rab

ij þ
1

2
Pab

ij

X
c

2ja
~k

ic � k
~ka
ic

� �
2tcb

~kj
� tbc

~kj

� �
: ð38Þ

Pij
ab in this equation is the two-fold permutation operator.

Contrastively, the outermost loop of contractions with

aij
kl, gc

a and gi
k (refer to Refs. [71, 72] for the actual

expressions of two g-arrays) is parallelized over the

canonical ij-pairs.

When the construction of residual vectors for doubles

and singles is complete in a certain iteration, the corre-

sponding norm is checked. The amplitude vectors are

straightforwardly updated in a first-order manner. The

update for doubles is given as

�tab
ij ¼ tab

ij þ
rab

ij

Dab
ij þ g

; ð39Þ

where an appropriate denominator shift (g) may be intro-

duced [126]. The pair correlation energies for ij are eval-

uated and summed up for the total correlation energy; this

stepwise summation is necessary for CEPA-1 [75, 81].

Both the energy difference and the norm of residuals are

monitored to judge the convergence of iteration. To

accelerate the convergence, the direct inversion iterative

sequence (DIIS) [127, 128] can be used. We set the cycle

of DIIS as three as a default option, yielding that the final

convergence in six decimal places in energy (au) is usually

achieved in 9–12 iterations for CCSD. If memory space is

not enough, the noncurrent set of vectors should be written

out for some external I/O devices and be read in at the time

of DIIS extrapolation. It is here emphasized that any I/O

event does not take place during a series of contractions.

After the CCSD or QCISD iterations as well as the

MP4(SDQ) calculation, the parallelized direct transforma-

tion is performed again to generate three integral types:

refer to Eqs. 8, 21 and 22. The dimensioning of (ia, jb) is

changed to [j, i, b, a], matching with the ‘‘abcijk’’ algo-

rithm of parallelization [89, 102]. The unpacking for ab-

pair should be made for (ab, ci) before the crucial N7-order

contraction [98] as the first term in Eq. 21. A total of 12

DGEMM calls are invoked to construct a tentative W ~a~b~c
ijk

array for a given abc-triplet, where six working buffers of

[i, j, k] dimensioning are utilized to accumulate the per-

mutation contributions. V ~a~b~c
ijk of Eq. 22 is prepared trivially.

The (T) corrections are actually calculated for the respec-

tive virtual MOs (or the outermost a-index), and they are

summed up finally. This treatment may be effective in

maintaining the numerical tolerance.

3.3 FMO calculation with ABINIT-MPX

Our newly developed CC module was incorporated into

ABINIT-MPX [43, 44], under the two-body FMO scheme

for energy [1–4]

EðTotalÞ ¼
X
I [ J

EðIJÞ � ðM � 2Þ
X

I

EðIÞ: ð40Þ

In this Equation, M is the total number of fragments in the

target molecular system, and IJ specify the fragment

dimers. The intra-node calculations of both monomers and

dimers assigned to nodes are processed with the OpenMP

parallelism [44].

As addressed in Sect. 1, the list of fragment-wise inter-

action energies has been extensively used for chemical dis-

cussions [4]. This useful measure is called as inter-fragment

interaction energy (IFIE) in ABINIT-MP(X) [129, 130] and

PAICS [45] or pair interaction energy (PIE) in GAMESS

[131]. The IFIE values at the HF level, denoted usually as

D ~EðIJÞ [40, 130], is derived by rewriting Eq. 40 as

EðTotalÞ ¼
X
I [ J

D ~EðIJÞ þ
X

I

�EðIÞ; ð41Þ

where the �EðIÞ corresponds to the fictitious monomer

energy by excluding the contribution from the

environmental electrostatic potentials. The differential

correlation energy can then be corrected in an additive

way. For instance, the corresponding MP2 correction [37,

41, 42] is given as

DE
ðIJÞ
MP2 ¼ E

ðIJÞ
MP2 � E

ðIÞ
MP2 � E

ðJÞ
MP2: ð42Þ

The correlated methods for FMO calculations should sat-

isfy the size-consistency [30–32]; the simple method of CI

singles and doubles (CISD) is unsuitable. Nakano et al.

[40, 132] introduced the dimer-ES approximation in which

the energies of fragment dimers consisting of distant

monomers are evaluated not with the HF procedure but

with the form of only electrostatic interactions. Unques-

tionably, the correlated calculations are omitted for such

dimers whose population might increase for larger systems

[2–4]. In other words, a great reduction in computational

cost is naturally obtained. Our previous works by FMO-

MP2 [43] and FMO-MP3 [44] on huge influenza proteins

benefited from this favorable situation. The same is true

also for higher-order correlated calculations.

The inner core MOs like 1s are kept frozen after the

FMO-HF step for each fragment, as in our Refs. [41–44].
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Additionally, we omit the very high-lying virtual MOs (say

106 in au) from the correlating space as well. These MOs

are byproducts of the projection technique to cut single

bond (without H-capping) at a special sp3-carbon atom [40,

132]. A certain fragment dimer could contain five or ten

such virtual MOs, depending on the way of fragmentation

[4, 132]. Since the CC module has now provided up to the

triples corrections of N7 cost [31–34], the option of frozen-

virtual MOs should reduce the total cost for proteins.

We did not yet introduce the dynamic (or adaptive) task

distribution with MPI, and thus, the total efficiency of

FMO calculations might be affected by the deviations in

granularity due to the sizes of fragment monomers and

dimers. On the ES2 system, the set of well-tuned math

libraries are supplied, and an OpenMP-conformable envi-

ronment is available as well. The DGEMM-oriented coding

in our CC module would enjoy a high performance by the

vectorized executions. The AO integral generator in ABI-

NIT-MPX based on Obara’s recursion method [133] had

already been vectorized [43, 44]. Care should be taken for

the parallelized Fock matrix construction for the EEO

parts, in order to prevent the conflicted addressing. As in

the case of ‘‘2h-4p’’ in MP3 calculation [44], the buffered

index algorithm, initially devised for particle simulations in

the plasma physics [134], was adopted [135], where the

exchange array (see Eq. 29) should have a dimensioning of

[ij, p, r, #t] (#t means the number of OpenMP threads).

When memory resource is limited, the ij-pairs are divided

for parallelization as an alternative option, leading to a

shortening of length for the DAXPY processing. The

switching is automatically made by judging from the

available memory and number of threads to be invoked.

Finally, the usability for commodity processor-based

cluster computers is addressed. As pointed out by Janowski

et al. [101], the modern processors, e.g., produced by Intel,

have been optimized for the matrix-matrix operations with

DGEMM. Our CC code should thus run on these com-

puters with a reasonable performance. If possible, more

cores and nodes would be desirable for higher-order cor-

related FMO calculations than those for the MP2 or MP3

calculations [41–44], since the relative costs for each

fragment can be enlarged rapidly.

4 Results and discussion

4.1 Benchmark tests on commodity computer

Firstly, the parallel acceleration up to 4 cores was tested

for the calculations of CCD, QCISD and CCSD on a single

node of a shared-memory computer equipping 2 dual-core

Xeon chips with 3.4-GHz clock-rate and 32 GB memory.

The standard Intel compiler and math libraries were used.

Three molecules, cytosine, isoleucine and glucose, were

calculated with the 6-31G** basis set [125]. The timings

and accelerations are summarized in Table 2, where the

time for integral transformation spent in the CC modules is

included. From this Table, it is immediately seen that

CCSD is several times costly relative to CCD and also that

the difference in cost between QCISD and CCSD is siz-

able. The observed degradation in acceleration from

2 cores to 4 cores may be caused by the 2 9 2 configura-

tion of chips in this computer (machine dependence).

Namely, a competition of memory access to such rij
ab could

take place by the threads of OpenMP parallelization [136].

Still, we consider that the acceleration of 2.6–2.8 by

4 cores is acceptable in practical calculations on modern

commodity cluster computers with many-core chips.

Secondly, the relative timings with 4 cores are discussed

for several methods with 6-31G** basis [125]. Table 3

shows the corresponding results of glucose and deoxy-

guanosine. The incremental costs of higher-order calcula-

tions relative to MP2 grow considerably, particularly when

beyond the MP4(SDQ) level. This fact indicates that more

cores per node are needed to use VDZP basis sets for these

size of molecules at high-level treatments of correlation. It

is expectable that the use of VDZ basis makes the situation

less demanding. The full fourth-order MP or MP4(SDTQ)

treatment [74] is still faster than the iterative methods

Table 2 Timings (in minutes) of CCD, QCISD and CCSD calcula-

tions for cytosine, isoleucine and glucose, with respect to 1, 2 and

4 cores in a single node [2 dual-core Xeon (3.4-GHz clock-rate),

32 GB shared-memory]

Cytosine Isoleucine Glucose

Time (m) Acc. Time (m) Acc. Time (m) Acc.

CCD #10 #10 #10

1 11.8 72.5 283.3

2 6.2 1.90 37.7 1.92 146.6 1.93

4 4.0 2.95 25.8 2.81 102.5 2.76

QCISD #14 #13 #11

1 35.3 206.8 650.4

2 18.4 1.92 106.7 1.94 334.5 1.94

4 12.8 2.76 75.5 2.74 241.7 2.69

CCSD #13 #11 #11

1 52.7 259.6 950.6

2 27.3 1.93 133.3 1.95 486.7 1.95

4 18.3 2.88 91.8 2.83 361.5 2.63

Acceleration factors are shown too

The numbers of 6-31G** basis functions [125] for cytosine, isoleucine

and glucose were 145, 200 and 240, respectively. The frozen-core

restriction was imposed. The number of occupied MOs correlated was

thus 21, 27 and 36 in order. The number of iterations needed for a

convergence in six decimal places of energy (au) is indicated with

sharp symbol (#) as well
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involving singles. Thus, MP4(SDTQ) should be an attrac-

tive option in a tradeoff between accuracy and cost, though

some care is necessary for near-degeneracies in a given

target molecule [31, 32, 80]. Interestingly, the time needed

for CEPA-1(SD) is rather longer than that for QCISD,

where the number of iterations is incremented.

Thirdly, the FMO calculations with 6-31G basis of the

standard VDZ type [125] were performed for a couple of

real proteins. One was a complex of the HIV-1 protease

and lopinavir; this complex had been employed in our

benchmark FMO-MP2 calculations [42, 48]. The lopinavir

ligand was divided into four fragments, and a single water

molecule was retained in the pharmacophore of protease

consisting of two subunits (99 residues per subunit). The

total number of fragment was then 203, and the number of

atoms and basis functions were 3225 and 17423, respec-

tively. Another protein was the influenza neuraminidase

(NA) complex with oseltamivir (well known as TamifluTM

in markets) [44]. The oseltamivir moiety was treated as a

single fragment. The numbers of atoms, residues (frag-

ments) and basis functions were 5792, 386 (378) and

32549, respectively. To examine the applicability of

higher-order correlated calculations for proteins, we used a

small cluster computer system with 16 nodes, in which

each node was equipped with 2 dual-core Xeon processors

(3.33-GHz clock-rate) and 16 GB shared-memory (total

64 cores). A single node with 4 cores was supplied for the

respective intra-fragment calculations of monomers and

dimers under the OpenMP environment. The inter-node

communications were controlled by MPI. Because the

resources of both memory and number of nodes were

limited, no method with singles was attempted. The job

timings (including FMO-HF and dimer-ES parts) are listed

in Table 4. The MP2 calculation was processed in the CC

module just after the integral transformation of (ia, jb). The

relative cost of MP3 to MP2 is 4 for both proteins pref-

erably. The FMO-CCD job for the HIV-1 protease was

completed in 149.6 h (or 6.2 days) and the FMO-MP4(DQ)

job for the influenza NA in 98.0 h (4.1 days). We think that

the FMO-based higher-order calculations have now been

made applicable to proteins consisting of a few hundreds

residues even on commodity computers, considering the

rapid advance of recent many-core technologies as well as

the availability of large memory space at low prices.

4.2 Benchmark tests on vector-parallel computer

As in our previous FMO-MP3 works [44], we utilized the

ES2 system as one of the most powerful computers

accessible for us in Japan. A single node of ES2 was

equipped with 8 vector processors (102.4 GFLOPS per

processor) and 128 GB shared-memory, and it was

assigned to the processing of fragment monomers and

dimers. The 6-31G basis set [125] was used throughout

primarily due to an allotted time limit of 12 h. Table 5

presents the timing results of benchmark jobs of four

proteins, by using 64 nodes (512 processors) and 128 nodes

(1024 processors). Both the HIV-1 protease complex and

influenza NA complex were tested again. The largest target

protein was a partial complex model between influenza HA

monomer and Fab-fragment [43, 44], whose numbers of

atoms, residues (fragments) and basis functions were

14086, 921 (911) and 78390, respectively. An uniform

model protein Trp127?His (3068 atoms and 18659 basis

functions), which had been used in Ref. [43], was calcu-

lated as well in order to consider the issue of load-bal-

ancing [136].

A variety of higher-order correlated calculations were

carried out with 64 nodes for the HIV-1 protease–lopinavir

complex, as can be seen in the upper entries of Table 5.

The left graphics of Fig. 3 is the visualized IFIE results

[129, 130] at the highest FMO-CCSD(T) level, showing

that the interactions with lopinavir are not limited near the

pharmacophore but spread over other parts of the protease.

Differences of a few kcal/mol in IFIEs were observed

between MP2 and CCSD(T). It is noteworthy that the rel-

ative cost factor of FMO-CCSD(T) to FMO-MP2 is as

good as 61.4 on the ES2 system, and the corresponding

value of QCISD(T) is 52.9. Meanwhile, the FMO-

MP4(SDTQ) calculation is less costly with this factor of

21.9. The inclusion of (T) calculation increases the total

Table 3 Timings (in minutes) of several higher-order methods for

glucose and deoxyguanosine, with 4 cores in a single node [2 dual-

core Xeon (3.4-GHz clock-rate), 32 GB shared-memory]

Glucose Deoxyguanosine

Time (m) Rel.a Time (m) Rel.a

MP2 1.6 1.0 5.1 1.0

MP3 10.9 6.8 59.5 11.7

MP4(DQ) 24.0 15.0 147.1 28.8

MP4(SDQ) 36.7 22.9 218.0 42.7

MP4(SDTQ) 145.2 90.8 878.0 172.2

CCD 102.5 #10 64.1 722.3 #11 141.6

CEPA-1(SD) 267.3 #13 167.1 2004.2 #17 393.0

QCISD 241.7 #11 151.1 1689.7 #13 331.3

QCISD(T) 350.8 219.3 2964.3 581.2

CCSD 361.5 #11 225.9 2167.1 #13 424.9

CCSD(T) 470.4 294.0 3434.2 673.4

The number of 6-31G** basis functions [125] for deoxyguanosine

was 350: see Table 2 caption for glucose. The frozen-core restriction

was imposed. The number of occupied MOs correlated was thus 51

for deoxyguanosine. The number of iterations needed for a conver-

gence in six decimal places of energy (au) is indicated with sharp

symbol (#) for iterative methods
a The relative cost to MP2 is indicated
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performances in efficiency relative to a theoretical peak

speed, as expected from the situation that the DGEMM

operations for matrix-matrix multiplications dominate

completely [84, 85, 89, 102, 111]. The high efficiency of

24.9 % in FMO-MP4(SDTQ) over 9.4 % in FMO-

MP4(SDQ) is a demonstrative evidence. The utilization of

vector processors in ES2 could provide an advantage in

acceleration over commodity processors, based on the

enhanced bandwidth in pipelined operations for large

matrices. For example, the relative cost of FMO-CCD to

FMO-MP2 is 39.4 (or 6.2 days as the job time) for a small

cluster computer as found in Table 4, but it is reduced to

Table 4 Timings (in hours) of FMO jobs for the HIV-1 protease–lopinavir complex and the influenza NA–oseltamivir complex on a 16 nodes

computer [2 dual-core Xeon (3.33-GHz clock-rate) and 16 GB shared-memory per node, total 64 cores]

HIV-1 NA

Time (h) Rel.a Time (h) Rel.a

FMO-MP2 3.75 1.0 10.37 1.0

FMO-MP3 14.98 4.0 42.33 4.1

FMO-MP4(DQ) 33.18 8.7 98.03 9.4

FMO-CCD 149.61 39.4 N/A

The 6-31G basis set [125] was used, and the frozen-core and frozen-virtual restrictions were imposed for each fragment. The convergence

threshold in energy was set in six decimal places. See text for molecular information such as the number of atoms
a The relative cost to FMO-MP2 is indicated. For NA, the FMO-CCD calculation was not attempted

Table 5 Timings (in hours) of FMO jobs for the HIV-1 protease–

lopinavir complex, the influenza NA–oseltamivir complex, the

influenza HA with Fab-fragment complex and Trp127?His on 64 or

128 nodes of ES2 [8 vector processors (each speed 102.4 GFLOPS)

and 128 GB shared-memory per node [44], 64 nodes and 128 nodes

supply total of 512 and 1024 processors, respectively]

Nodes Time (h) Rel.a TFLOPS Eff.b (%)

HIV-1

FMO-MP2 64 0.16 1.0 1.24 2.36

FMO-MP2c 64 0.16 1.0 1.22 2.33

FMO-MP3 64 0.36 2.3 3.40 6.48

FMO-MP3c 64 0.37 2.3 2.82 5.38

FMO-MP4(DQ) 64 0.62 3.9 5.70 10.87

FMO-MP4(SDQ) 64 0.85 5.3 4.92 9.38

FMO-MP4(SDTQ) 64 3.51 21.9 13.05 24.89

FMO-CCD 64 2.90 18.1 6.15 11.72

FMO-QCISD 64 5.73 35.8 5.20 9.91

FMO-QCISD(T) 64 8.46 52.9 8.45 16.13

FMO-CCSD 64 7.82 48.9 4.41 8.40

FMO-CCSD(T) 64 9.83 61.4 7.75 14.78

NA

FMO-MP4(SDQ) 64 2.86 4.26 8.13

FMO-MP4(SDTQ) 128 10.29 15.21 14.50

HA

FMO-MP4(SDQ) 64 4.70 4.78 9.12

Trp127?His

FMO-MP4(SDQ) 64 1.79 9.58 18.27

FMO-MP4(SDTQ) 128 7.06 40.46 38.59

The 6-31G basis set [125] was used, and the frozen-core and frozen-virtual restrictions were imposed for each fragment. The convergence

threshold in energy was set in six decimal places. See text for molecular information such as the number of atoms
a For HIV-1, the relative cost to FMO-MP2 is indicated
b Efficiency (in percentage) is defined for the observed gross speed relative to the theoretical peak speed of supplied processors
c Custom routines for MP2 [43] and MP3 [44] were used for comparison
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18.1 (or only 0.1 days) for ES2. Similar comparisons are

valid for FMO-MP4(DQ) as well as FMO-MP3. When the

first priority is put on the time-saving, the massively vec-

tor-parallel computer should be used if available [43, 44].

As just discussed in the above paragraph, the FMO-

based higher-order calculations up to CCSD(T) would be

tractable for the complex of HIV-1 protease consisting of

198 residues. The intrinsic low-scaling nature of the FMO

scheme [2–4] is responsible for this favorable achievement,

though the high computational power of ES2 should also

be contributive. It is therefore interesting to see the appli-

cability to a couple of influenza proteins having larger

sizes. The FMO-MP4(SDQ) job timings in Table 5 are

2.9 h for the NA–oseltamivir complex and 4.7 h for the HA

plus Fab-fragment, with 512 processors. For the former, the

FMO-MP4(SDTQ) job was furthermore executed with

1024 processors, and the resulted timing was 10.3 h with a

reasonable efficiency. The right graphics in Fig. 3 presents

the interaction energies with oseltamivir at this level of

calculation. Supposing that the scalability from 64 nodes to

128 nodes is 2, the timing of FMO-MP4(SDTQ) with 64

nodes might be 20.6 h, which is 7.1 times longer than that

of 2.9 h FMO-MP4(SDQ). In contrast, the observed ratio

for the HIV-1 protease is only 4.1, implying that the

incremental cost for triples depends on the size of target

proteins.

The load-imbalance has been well known as a critical

factor to degrade the total performance in parallel proces-

sings [136]. In the case of FMO calculations, the differ-

ences in fragment sizes causes such a degradation, as

addressed in SubSect. 3.3. The FMO-MP4(SDTQ) job for

Trp127?His recorded a notably high efficiency of 38.6 %

for 1024 processors (refer to Table 5), and the efficiency

for FMO-MP4(SDQ) was observed as favorable as 18.3 %.

These values of Trp127?His shed light on the importance

of load-balancing and prove the potential of kernel mod-

ules in our ABINIT-MPX at the same time. It is fair to note

that GAMESS has an advantage in controlling the task

distributions in an adaptive fashion with the generalized

DDI (GDDI) [35, 97]. The load-balancing for fragments

has been a long-term issue for ABINIT-MPX [43, 44].

In our previous study based on the custom MP3 module

[44], a full influenza antigen–antibody model consisting of

HA trimer and two Fab-fragments was computed on the

ES2 system, where the molecular size was 2.6 times larger

(2325 fragments and 201276 basis functions) than that of

the HA monomer model employed presently and also in

Ref. [43]. The residue-specific recognition mechanism as

well as the mutation possibilities [137, 138] has been

analyzed in detail [139]. In such analyses, the MP2.5

approach [140], in which the third-order correlation con-

tributions are scaled by 0.5, was used in evaluating IFIE

values, since it could provide a better correspondence to

the results of CCSD(T) than that by the naive MP3. Surely,

the FMO-CCSD(T) job should be too demanding for such a

giant protein even with the ES2 system.

4.3 Future direction

Besides the load-balancing, efforts are still necessary to

enhance a total applicability of higher-order calculations to

real problems. Three concerns are addressed as below.

The timings of benchmark calculations have just shown

that CCD is roughly 3–4 times cheaper than CCSD, as

found in Tables 2, 3 and 5. This fact is consistent with the

reduced complexity of equations [78–80, 101], omitting the

orbital relaxations due to singles. The method of Brueckner

doubles (BD) is a macro-iterative CCD approach with

updating the MOs occupied in the Brueckner determinant,

by which the relaxation effect with some resistance against

Fig. 3 Visualized IFIE results for the HIV-1 protease complex with

lopinavir (left) and the influenza NA complex with oseltamivir (right).
The calculation levels are FMO-CCSD(T)/6-31G for the former and

FMO-MP4(SDTQ)/6-31G for the latter. The contributions from 4

fragments in lopinavir were properly summed up. Red and blue refer

to the interaction energies with central drug molecule (drawn with

yellow balls) in stabilization (negative) and destabilization (positive).

The range from -10 to ?10 kcal/mol is shown with gradation
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near-degeneracies can be taken into account [80, 141–143].

In BD, the orbital rotation parameters is obtained as the

solution of effective singles equation containing the dou-

bles amplitudes just determined by the CCD step. Testing

with a prototype BD code indicated that a few macro-

iterations are usually enough for a practical convergence.

Namely, a total computational cost of BD may be com-

parable to that of CCSD for which more memory is

required to process the three-virtual MO integrals through

the EEO route [72]. BD with perturbative triples

(BD(T) [142, 143]) is straightforward to do, where there is

no need for the list of (ia, jb). The modification works for

BD and BD(T) have been underway.

We had developed a set of routines related to the CD

integral approximation [46]. They were utilized for FMO-

MP2 calculations with an acceleration of ten times [48],

where the (ia, jb) integrals were factorized. References

[144–146] reported the applications of CD techniques to

CC calculations with promising results. Therefore, the CD-

based integral processing is worth to consider as one of

future extensions in ABINIT-MPX, especially for the use of

basis sets of better quality (e.g., 6-311G** [125]). An

alternative route to make the incremental costs for CC

calculations moderate may be the utilization of modified

virtual MOs. Namely, the HF virtual MOs might be pre-

transformed to the optimized correlating MOs, and the

primary subset with substantial contributions would be

used at a small loss of accuracy [147].

The basis set superposition error (BSSE) [20, 148] is

particularly influential for dispersion type interactions

that are relevant in proteins as well as DNA. Ishikawa

and Kuwata [45] first provided the counterpoise correc-

tion (CP) for FMO-MP2. Very recently, we [149] have

implemented the CP procedure at the FMO-MP3 level

[44] (including MP2.5 [140]). In Ref. [149], sizable

differences were found not only in the interaction ener-

gies with and without BSSE-CP corrections but also in

the results obtained by MP2 and MP2.5 treatments. The

implementation of CP procedure with the general CC

module is a future issue.

5 Summary

In this paper, we reported the development of parallelized

direct CC module in our ABINIT-MPX [43, 44], by which

a variety of higher-order correlated calculations [30–32]

were made available in conjunction with the FMO scheme

[1–4]. A mixed integral usage with MO and AO indices

was adopted for a series of tensorial contractions [72]. The

intra-node parallelization was done with the thread-based

OpenMP for the efficient usage of memory. The kernel

processing of matrix-matrix multiplications was done with

DGEMM. The standard MPI control was used to distribute

the tasks of fragments (monomers and dimers) over com-

puting nodes. Namely, a hybrid parallelism was taken as in

Ref. [44]. Some test calculations without FMO scheme first

showed reasonable performance on a single node of com-

modity computer. A small cluster computer with 64 cores

(4 cores per node and total 16 nodes) was used for the

FMO calculations on the HIV-1 protease–lopinavir com-

plex (203 fragments) [41, 48] as well as the influenza

NA–oseltamivir complex (378 fragments) [44]. The FMO-

CCD/6-31G job for the former was completed in 149.6 h

(6.2 days), while the FMO-MP4(DQ)/6-31G job for the

latter was finished in 98.0 h (4.1 days). These timing data

suggested an applicability of beyond-MP2 calculation with

the FMO scheme to proteins even on commodity com-

puters. ES2, a massively vector-parallel computer, pro-

vided a considerable acceleration in processing and

allowed the inclusion of singles as well as triples. With the

6-31G basis set, various treatments were applied to the

HIV-1 protease complex. The highest-level FMO-CCSD

and FMO-CCSD(T) jobs were completed in 7.8 and 9.8 h,

respectively, with 512 processors (8 processors per node

and total 64 nodes), indicating that the cost of (T) calcula-

tions is quite accessible on the vector computer. More

approximated methods were performed less costly (e.g.,

5.7 h for QCISD). The FMO-MP4(SDQ)/6-31G calcula-

tion was applied to a model complex of influenza HA

monomer with Fab-fragment (911 fragments) [43], and the

corresponding timing with 512 processors was 4.7 h. The

FMO-MP4(SDTQ)/6-31G job for the NA–oseltamivir

complex was completed in 10.3 h with 1024 processors

(128 nodes). The same job for the Trp127?His model

protein achieved a remarkable efficiency of 38.6 % relative

to the theoretical peak performance. These test calculations

proved a high usability of the FMO-based higher-order

calculations for proteins with ABINIT-MPX. As docu-

mented by de Jong et al. [150], extensive efforts by theo-

retical chemists around the world have been conducted

toward the peta-scale computational chemistry through the

advanced parallel processing technologies. We should

continue works to enhance the ability of our CC module.

For instance, the implementation of BD and BD(T) [141–

143] is in progress. The improvement of task distribution

for fragments is another issue when the number of avail-

able processors/nodes grows dozens of times in near future.

In this regard, the use of smaller units in fragmentation,

e.g., through the separation of main chains and side chains

in amino acid residues, may be convenient to control the

granularity of tasks for better load-balance, where up to

four-body corrections (FMO4) are to be incorporated to

maintain chemical accuracy of calculations [151]. The

reduction of fragment size may be helpful to perform

higher-order calculations as well. Finally, we expect the
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developments of multi-node OpenMP environment [152,

153], by which the intra-fragment processing over nodes is

enabled.
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